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(bps/Hz), * indicates standards peak targets [1]

% Shannon—Hartley theorem

HK . H
C = B logydet(In, + U—%)
bandwidth

~
spectral efficiency

s Bandwidth
= Proportional to operating frequency

% Spectral efficiency
= MIMO technology applied to 4G, 5G
and future generations.

[1] CTIA report, “Smarter and More Efficient: How America's
Wireless Industry Maximizes its Spectrum”
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Millimeter wave (mmWave) communications

< mmWave band >
Sub-6GHz Bands 24 to 100GHz Bands 100-300GHz Bands
3.4-3.6GHz 24 30 32 40 4850 60GHz 71 81

Shared Shared Unlicensed

N * Challenges
s Opportunities _ _
= High propagation loss

= Abundant spectrum resources = oS dominant

= Compact massive MIMO antennas = Vulnerable to blockage




MIMO channel in richly scattered environment
— The ideal case

Cluster of
scatters

&) () () (N o = N W s

Auglar channel response

Fig. 2 MIMO channel in angular domain [2] in [2] Tse, David, and Pramod Viswanath. Fundamentals of
richly scattered environment wireless communication. Cambridge university press, 2005.




MIMO channel in richly scattered environment
— The ideal case

= Full angular spread

Z = Well-conditioned channel
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Fig. 2 MIMO channel in angular domain [2] in [2] Tse, David, and Pramod Viswanath. Fundamentals of

richly scattered environment wireless communication. Cambridge university press, 2005.




MIMO channel in poorly scattered environment
— MmWave communications
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MIMO channel in poorly scattered environment
— MmWave communications

) @ ©® @ @ = Small angular spread
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« Limited degree-of-
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= Vulnerable to blockage

Auglar channel response

Can mmWave channel be
improved artificially?

Fig. 3 MmWave MIMO channel in angular domain




Intelligent Reflecting Surface (IRS)
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Fig. 4 Fabricated programmable metasurface and the simplified equivalent circuit model [3]

Metamaterials — A breakthrough in material science

o Metasurfaces, two-dimensional metasurfaces;

o Massive low-cost reflecting elements mounted on a planar surface;
o Passive, no RF energy consumption, negligible additive noise [4].

[3] W. Tang, et al. “Wireless communications with programmable metasurface: Transceiver design and experimental results.” China
Communications 16.5 (2019): 46-61.

[4] M. Di Renzo et al., “Reconfigurable intelligent surfaces vs. relaying: Differences, similarities, and performance comparison," in
IEEE Open Journal of the Communications Society, vol. 1, pp. 798-807, 2020.
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MmWave channel

Channel response of mmWave communications

L

H = gLosdlaM(gBM,l)ag(¢BM,ll‘|’ Z Sian (Opar)ah (opary)
~ 1—2

-

LoS component

v

NLoS component

. Gros is the indicator of blockage
&, is the path coefficient

1

2

3. Osumy, ¢BMm, are cosine AoA and cosine AoD

4. apm(-),ap(-)steering vectors in mobile terminal’s side and base station’s side.
)

The number of paths L is a small number, and that power of the LoS component is
about 13 dB higher than the sum of power of NLoS components [5] .

[5] Z. Mubhi-Eldeen, L. Ivrissimtzis, and M. Al-Nuaimi, “Modelling and measurements of millimetre wavelength propagation in urban
environments,” IET Microw., Antennas Propag., vol. 4, no. 9, pp. 1300-1309, 2010.
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MmWave channel assisted by IRSs
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MmWave channel assisted by IRSs
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Channel response of mmWave communications assisted by IRSs
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IRSs should be dispersedly placed to increase angular spread
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th virtual LoS (VL0S), i.e.,
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The optimal reflection pattern is
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Knowledge of ¢Ba,1,0BM,1 and or,, . Or, M

are essential for beamforming designs.
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Breakdown of beam training

Unlike scatterers/reflectors in physical world, IRSs can be controlled to
meet our needs

* More activated IRSs are favourable in data transmission stage;
= Better channel condition
= Less sparse in angular domain

*» Less activated IRSs are favourable in beam training stage;
= Poor channel condition
= Sparse in angular domain
« Compressed sensing, sparser - more solvable
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Breakdown of beam training
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* In Scenario 2, BS/AP works as a feed antenna to provide incident wave



Parameter estimation of an LoS/VLoS path

* The unified signal model in Scenario 1&2
Yn = Cn5nDb(9n7 @n) T W

Gn Ou) 8 )

¢» : indicator of blockage
5, . path coefficient

g,, . cosine AoA

¢n: cosine AoD

Y=»: channel measurements
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Parameter estimation of an LoS/VLoS path

The unified signal model in Scenario 1&2

O | Gn
\\yV

Estimation of §,,,6,,, ¢, under the assumption

Cn =1
(6n, Ony ) = argmaxcgn,@nj%ﬁ(én, Oy On)
¢» - indicator of blockage where L(6,,0,, ¢n) = log P(y|C, = 1,05, 0, dp)

dn, - path coefficient
g,, . cosine AoA
¢n: cosine AoD

Y=»: channel measurements
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Parameter estimation of an LoS/VLoS path

* The unified signal model in Scenario 1&2

bn) On) On) Gn Yo = GuduDb(0n, 60) +w
\\ V « Estimation of §,,,6,,, ¢, under the assumption
Yn Cn =1
(Snv é’m ggn) = argmaxén,é’n,qﬁnﬁ(éna Qna ¢n)
¢n : indicator of blockage where L(6,,0,, ¢n) = log P(y|C, = 1,05, 0, dp)

dn, - path coefficient : : .
g . « Estimation of blockage indicator ¢y

* Residual signal power ratio

. ||Yn_8nDb(éna¢gn)”%
“n = lynl?
Y». channel measurements Ynlla

g,, . cosine AoA

®n: cosine AoD

« How well the estimated (9,,8,,®,) can reconstruct
channel measurements y»
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Interplay between

beam training and positioning
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Interplay between beam training and positioning

ep
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Interplay between beam training and positioning
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Interplay between beam training and positioning
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Anchor 1 Anchor 2 Anchor N

On, On, On are conditioned on MT location PM.
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Positioning
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Positioning
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*» Information of IRSs (i.e., reflector geometry, location) is available
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Positioning

BS/AP RS

- Scatterer/
Reflector
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—_— NLoS

S— LoS
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*» Information of IRSs (i.e., reflector geometry, location) is available

¢ Information of BS/AP is available
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Positioning

i
. BS/AP
I IRS
Scatterer/
\ - Reflector
VLoS
—_— NLoS

S— LoS

IVIT

Information of IRSs (i.e., reflector geometry, location) is available

¢ Information of BS/AP is available

% Treat BS/AP and IRSs as identical anchors

Three unblocked links (LoS/VL0oS) are sufficient to estimate MT position
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Positioning

/7

s Sort the reliability of the anchors in ascending order according to

||.Yn_5nDb(éna¢A5n)”%
T —
" lynll5
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% To estimate the 3-D position Pazs , least square criterion can be adopted

2

: n (p —PM)Te

min JINEDS (cbn— ”; E—T 1) st. pu€eS
neN n M2

/7

s Starting from the most reliable anchors, iteratively perform positioning

algorithm until the algorithm fails to converge
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Positioning — More Than a Fringe Benefit
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Positioning — More Than a Fringe Benefit

Parameter Refinement . RN IBAETS (o ) 1Oy 6y ) On) 6N lSN )

Blockage Decision

Whether matched?
If yes, él =1
If no, él = ()

\ ( q%lx é ) 5] " CAl | l QBQ :‘ 92 ) ( 52. A ) e ( &N éN ) SN ) { CAN ‘
7 \\//'
1) (YN

) G
YN

< Position aided parameter refinement: obtain §,,, 8,,, ,, based on Dy
< Position aided blockage estimation: compare §,, (0r 6,,, ¢,,) With §,, (or 6,,, ¢,,)
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Numerical Results

05 T T T T T

—+— Indoor positioning with training length N=8
04r —B— Indoor positioning with training length N=16

RMSE

Tx Power/dBm

Fig. 6 Accuracy of Positioning

30

When the training length is N=8, RMSE converges to 0.04 meter from 15 dBm.

When the training length is N=16, RMSE converges to 0.02 meter from 15 dBm.
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Numerical Results

(a) Training length N=16 (b) Training length N=8
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m -+~ AoA estimated by beam training with random beamforming = -+~ AoA estimated by beam training with random beamforming
+- ~ B AoD refined by location informaiton s B AoD refined by location information
— AoA refined by location informaiton l;lf;;_ —+— AoA refined by location informaiton
L
w0
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Fig. 7 MSE performance of AOA/AoD refined by location information

= Location aided parameter refinement significantly improves the accuracy of

Ao0A/AoD estimation.



Numerical Results

(a) Training length N=16 (b) Training length N=8
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Fig. 8 Performance of blockage estimation

= Location aided blockage estimation outperforms traditional blockage estimation
methods
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Conclusion

O With IRSs, we can artificially configure the wireless channel

O Using compressed sensing techniques, we accurately estimate the
parameters of the LoS/VLo0S paths, which facilitates localization of MTs

O With the aid of location information, we cross verify and enhance the
parameters of the LoS/VLoS paths.




