Jittering effects analysis and beam training design for UAV mmWave communications

Wei Wang

School of Electrical Engineering & Telecommunications The University of New South Wales, Sydney, Australia

Nov. 2021

Jittering effects analysis and beam training design for UAV mmWave communications Nov. 2021 1 / 27

4 D K 4 B K 4 B K 4

Outline

Background and Motivations

- 2) The Effects of UAV Jitter on mmWave Channel
- 3 Navigation-information-aided Beam Training Design
- 4 Numerical Results
- 5 Conclusion

UAV communications

Background

- UAV communications
 - High operational flexibility and controllable mobility
- MmWave communications
 - Directional transmission and high throughput
- UAV + mmWave communications
 - An on-demand solution to high-capacity wireless backhaul in cellular networks

Movitations

- Jittering effects are a key factor that characterizes UAV communications
 - Detrimental to UAV mmWave backhaul with a directional narrow beam

Outline

Background and Motivations

2 The Effects of UAV Jitter on mmWave Channel

3 Navigation-information-aided Beam Training Design

4 Numerical Results

5 Conclusion

Wei Wang Jittering effects analysis and beam training design for UAV mmWave communications Nov. 2021 4 / 27

What is UAV jitter?

- UAV jitter: The unintended high-frequency change of UAV attitude/orientation;
- Euler angles describe the orientation of a rigid body with respect to a fixed coordinate system

$$\mathbf{R} = \mathbf{R}_{Yaw}(\alpha)\mathbf{R}_{Pitch}(\beta)\mathbf{R}_{Roll}(\gamma)$$

• UAV jitter modelled by Euler angles

$$\alpha = \bar{\alpha} + \Delta \alpha$$
$$\beta = \bar{\beta} + \Delta \beta$$
$$\gamma = \bar{\gamma} + \Delta \gamma$$

where $\bar{\alpha}, \bar{\beta}, \bar{\gamma}$ are the desired attitude angles, and $\Delta \alpha, \Delta \beta, \Delta \gamma$ refer to the fluctuations caused by UAV jitter.

Narrow-band mmWave Channel Model

Channel model
$$\mathbf{H} = \sum_{l=0}^{L-1} \beta_l \mathbf{v}(\Psi_{U,l}, \Omega_{U,l}) \mathbf{v}^H(\Psi_{B,l}, \Omega_{B,l})$$

- v(Ψ_U, Ω_U) and v(Ψ_B, Ω_B) are array response (steering) vectors at UAV side and BS side.
- LoS component dominates, i.e., $|\beta_0| >> |\beta_l|, l \neq 0$
- H is characterized by (Ψ_{U,0}, Ω_{U,0}) and (Ψ_{B,0}, Ω_{B,0}), which are termed as cosine AoA/AoD or direction cosines.

Wei Wang

 $\Omega_U = \cos \omega_U = \mathbf{e}_{U,h}^T \mathbf{e}_{BU}$ $\Psi_U = \cos \psi_U = \mathbf{e}_{U,v}^T \mathbf{e}_{BU}$

A Deep Look Into Angles

- ϕ_k : Elevation angle
- θ_k : Azimuth angle
- ek: Direction vector from user k to BS

(1) Azimuth angle & Elevation angle

- Angles in spherical coordinate that are used to identify the position of UAV
- The direction vector from UAV to BS is $\mathbf{e}_{BU} = [\cos \phi \cos \theta, \cos \phi \sin \theta, \sin \phi]^T$ where ϕ is elevation angle and θ is azimuth angle of the LoS path.
- Can be obtained via GPS and barometer.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

A Deep Look Into Angles

(2) Yaw, pitch & roll angles

(3) Angle of arrival (AoA) & Angle of departure (AoD)

• Can be measured via Gyroscope.

 Can be obtained through estimating phase differences of the elements of an antenna array.

A Deep Look Into Angles

Jittering Effects on Cosine AoA/AoD

Two-dimensional	UAV position related	UAV attitude related
AoA/AoD	angles (i.e., ϕ , θ)	angles (i.e., α , β , γ)
(Ψ_B,Ω_B)	Dependent	Independent
(Ψ_U, Ω_U)	Dependent	Dependent

 Table 1: Dependency of the two-dimensional AoA/AoD (BS side and UAV side) on UAV position and UAV attitude

- UAV Jittering Effects on cosine AoA/AoD at UAV side cannot be ignored
- UAV Jittering Effects on cosine AoA/AoD at BS side are negligible

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Jittering Effects on Cosine AoA/AoD - Numerical Examples

Modelling of UAV jitter: $\sigma_{\alpha} = \sigma_{\beta} = \sigma_{\gamma} = 0.05$

(a) Variation of Ψ_U , Ω_U , Ψ_B and Ω_B over time (Scenario 1)

(b) Empirical marginal probability density function of Ψ_U and Ω_U (Scenario 1)

Figure 1: UAV is hovering at the position $\mathbf{p}_U = [-100, 100, 50]^T$ (Cartesian coordinates) with its desired flight attitude being $\bar{\alpha} = \bar{\beta} = \bar{\gamma} = 0$

The Effects of UAV Jitter on mmWave Channel

Jittering Effects on Cosine AoA/AoD - Numerical Examples

(a) Variation of Ψ_U , Ω_U , Ψ_B and Ω_B over time (Scenario 1)

(b) Empirical marginal probability density function of Ψ_U and Ω_U (Scenario 1)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Figure 2: UAV is hovering at the position $\mathbf{p}_U = [-100, 100, 50]^T$ (Cartesian coordinates) with its desired flight attitude being $\bar{\alpha} = 1$, and $\bar{\beta} = \bar{\gamma} = 0$

The Effects of UAV Jitter on mmWave Channel

Jittering Effects on Cosine AoA/AoD - Numerical Examples

(a) Variation of Ψ_U , Ω_U , Ψ_B and Ω_B over time (Scenario 1)

(b) Empirical marginal probability density function of Ψ_U and Ω_U (Scenario 1)

Figure 3: UAV is hovering at the position $\mathbf{p}_U = [0, 100, 50]^T$ (Cartesian coordinates) with its desired flight attitude being $\bar{\alpha} = \bar{\beta} = \bar{\gamma} = 0$

Jittering Effects on Cosine AoA/AoD

Outline

Background and Motivations

2) The Effects of UAV Jitter on mmWave Channel

Navigation-information-aided Beam Training Design

4 Numerical Results

5 Conclusion

• • • • • • • • • • • • •

UAV Beam Training Under Jittering Effects

Anne a hore

The Objective of Beam Training: Estimate AoA/AoD of the strongest path in mmWave channel to support the subsequent beam alignment operation.

- Ideally, with the relative position (Azimuth angle & Elevation angle) and attitude (Euler angles) of UAV, AoA/AoD can be accurately obtained.
- However, UAV platform faces the following challenges
 - Gyroscope and accelerometer are very sensitive to the jitter/vibration induced by the engine and wind gust;
 - The estimation error increases with the degree of UAV jitter.

4 D K 4 B K 4 B K 4 B K

Antre a Marre

UAV Beam Training Under Jittering Effects

Utilizing navigation information to facilitate compressed sensing (CS) based UAV beam training.

- Obtain a rough estimate of cosine AoA/AoD from navigation information according to the relationship between angles.
- Narrow down the search range of CS-based beam training

< ロ > < 同 > < 回 > < 回 >

How to Design Sensing Matrix

Figure 4: Fully random case with the sensing range being $\Psi_U, \Omega_U \in (-1, 1)$

- Sensing matrix needs to satisfy restricted isometry property (RIP)
- Randomly generated (under constant modulus constraint) sensing matrix satisfies RIP with high probability
- However, fully random sensing matrix is semi-omnidirectional and power inefficient and will result in heavier training overload.

How to Design Sensing Matrix

How to design the (random) CS sensing matrix within an arbitrary sensing range?

- Design of direction-constrained CS sensing matrix is challenging due to
 - Constant modulus constraint of analog array antenna
 - Restrained sensing range

イロト イポト イラト イラ

Direction-Constrained Sensing Matrix

Figure 5: Visualization of sub-array partition along one dimension

Sub-array based method:

Radiation range of the sub-array: $\left(-\frac{N_a}{N_{U,x}} + \zeta_{n_a}, \frac{N_a}{N_{U,x}} + \zeta_{n_a}\right)$

- Step1. Restrict center angle ζ_{n_a} and sub-array size N_{U,x} to restrain radiation range;
- Step2. Randomize φ_{n_a} and partially randomize center angle ζ_{n_a} to satisfy RIP.

Direction-Constrained Sensing Matrix

(c) Partially random case with Na= 2 sub-arrays

Figure 6: Visualization of sub-array based design of random sensing vector (the scale of angle is $\cos^{-1} \Psi_U$)

Direction-Constrained Sensing Matrix

(b) $N_a = 2$ sub-arrays, and the sensing range is $\Psi_U, \Omega_U \in (-0.225, 0.225)$

< 6 b

- Tel - N

Figure 7: Beam space of partially random sensing matrices under constant modulus constraint

Outline

Background and Motivations

2 The Effects of UAV Jitter on mmWave Channel

3 Navigation-information-aided Beam Training Design

4 Numerical Results

5 Conclusion

Numerical Results

Spectral Efficiency Comparison

(a) When transmit power is -10dBm

(C) When transmit power is 10dBm

(b) When transmit power is 0dBm

(d) When transmit power is 20dBm 🗉 🕤

Jittering effects analysis and beam training design for UAV mmWave communications Nov. 2021 24 / 27

Outline

- Background and Motivations
- 2 The Effects of UAV Jitter on mmWave Channel
- 3 Navigation-information-aided Beam Training Design
- 4 Numerical Results

- We analytically build the connection between UAV jitter and its effects on mmWave channel;
- We propose a navigation-information-aided beam training for UAV mmWave communications;
- UAV beam training scheme assisted by navigation information can achieve better accuracy with reduced training length in AoA/AoD estimation.

Q&A

イロト イロト イヨト イヨト

æ